
Is it still possible to extend TCP?

Michio Honda∗, Yoshifumi Nishida∗, Costin Raiciu†, Adam Greenhalgh‡,
Mark Handley‡, Hideyuki Tokuda∗

Keio University∗, Universitatea Politehnica Bucuresti†,University College London‡

{micchie,nishida}@sfc.wide.ad.jp, costin.raiciu@cs.pub.ro
{a.greenhalgh,m.handley}@cs.ucl.ac.uk, hxt@ht.sfc.keio.ac.jp

ABSTRACT
We’ve known for a while that the Internet has ossified as
a result of the race to optimise existing applications or en-
hance security. NATs, performance-enhancing-proxies, fire-
walls and traffic normalizers are only a few of the middle-
boxes that are deployed in the network and look beyond the
IP header to do their job. IP itself can’t be extended because
“IP options are not an option” [9]. Is the same true for TCP?

In this paper we develop a measurement methodology for
evaluating middlebox behavior relating to TCP extensions
and present the results of measurements conducted from mul-
tiple vantage points. The short answer is that we can still
extend TCP, but extensions’ design is very constrained as it
needs to take into account prevalent middlebox behaviors.
For instance, absolute sequence numbers cannot be embed-
ded in options, as middleboxes can rewrite ISN and preserve
undefined options. Sequence numbering also must be con-
sistent for a TCP connection, because many middleboxes
only allow through contiguous flows.

We used these findings to analyze three proposed exten-
sions to TCP. We find that MPTCP is likely to work correctly
in the Internet or fall-back to regular TCP. TcpCrypt seems
ready to be deployed, however it is fragile if resegmentation
does happen - for instance with hardware offload. Finally,
TCP extended options in its current form is not safe to de-
ploy.

1. INTRODUCTION
The Internet was designed to be extensible; routers

only care about IP headers, not what the packets con-
tain, and protocols such as IP and TCP were designed
with options fields that could be used to add additional
functionality. The great virtue of the Internet was al-
ways that it was stupid; it did no task especially well,
but it was extremely flexible and general, allowing a
proliferation of protocols and applications that the orig-
inal designers could never have foreseen.

Unfortunately the Internet, as it is deployed, is no
longer the Internet as it was designed. IP options have
been unusable for twenty years[9] as they cause routers
to process packets on their slow path. Above IP, the
Internet has benefited (or suffered, depending on your

viewpoint) from decades of optimizations and security
enhancements. To improve performance [2, 7, 16, 3],
reduce security exposure [13, 28], enhance control, and
work around address space shortages [21], the Internet
has experienced an invasion of middleboxes that do care
about what the packets contain, and perform processing
at layer 4 or higher within the network.

The problem now faced by designers of new protocols
is that there is no longer a well defined or understood
way to extend network functionality, short of imple-
menting everything over HTTP[18]. Recently we have
been working on adding both multipath support[11] and
native encryption[5] to TCP. The obvious way to do
this, in both cases, is to use TCP options. In the case of
multipath, we would also like to stripe data across more
than one path. At the end systems, the protocol design
issues were mostly conventional. However, it became
increasingly clear that no one, not the IETF, not the
network operators, and not the OS vendors, knew what
will and what will not pass through all the middleboxes
as they are currently deployed and configured. Will
TCP options pass unchanged? If the sequence space
has holes, what happens? If a retransmission has dif-
ferent data than the original, which arrives? Are TCP
segments coalesced or resegmented? These and many
more questions are crucial to answer if protocol design-
ers are to extend TCP in a deployable way. Or have we
already lost the ability to extend TCP, just like we did
two decades ago for IP?

In this paper we present the results from a measure-
ment study conducted from 142 networks in 24 coun-
tries, including cellular, WiFi and wired networks, pub-
lic and private networks, residential, commercial and
academic networks. We actively probe the network to
elicit middlebox responses that violate the end-to-end
transparency of the original Internet architecture. We
focus on TCP, not only because it is by far the most
widely used transport protocol, but also because while
it is known that many middleboxes modify TCP behav-
ior [6], it is not known how prevalent such middleboxes
are, nor precisely what the emergent behavior is with
TCP extensions that were unforeseen by the middlebox

1



designers.
We make three main contributions. The first is a

snapshot of the Internet, as of early 2011, in terms of
its transparency to extensions to the TCP protocol. We
examine the effects of middleboxes on TCP options, se-
quency numbering, data acknowledgment, retransmis-
sion and resegmentation.

The second contribution is our measurement method-
ology and tools that allow us to infer what middleboxes
are doing to traffic. Some of these tests are simple and
obvious; for example, whether a TCP option arrives or
is removed is easy to measure, so long as the raw packet
data is monitored at both ends. However, some tests
are more subtle; to test if a middlebox coalesces seg-
ments it is not sufficient to just send many segments —
unless the middlebox has a reason to queue segments it
will likely pass them on soon as they arrive, even if it
has the capability to coalesce. We need to force it to
have the opportunity to coalesce.

Finally we examine the implications of our measure-
ment study for protocol designers that wish to extend
TCP’s functionality. In particular, we look at propos-
als for Multipath TCP[11], TcpCrypt[5], and TCP Ex-
tended Options[8], and consider what our findings mean
for the design of these protocols and their deployability.

The reminder of this paper is organized as follows:
Sec. 2 describes related work; in Sec. 3 we describe our
methodology and introduce the TCPExposure tool, our
tool to inspect middleboxes behavior; in Sec. 4 we ex-
amine middlebox behavior on each protocol component
in more detail, show how to detect this behavior, then
present our measurement results from running TCPEx-
posure in 142 networks; in Sec. 5 we examine the im-
pact on TCP extensions as case-study. We summarise
our conclusions in Sec. 6.

2. RELATED WORK
There exists a large body of work related to the mea-

surement, analysis and identification of different de-
ployed TCP implementations, but none of it has specif-
ically focused on analyzing TCP middlebox behaviour.

Padhye and Floyd perform a client-side analysis of
numerous public web servers to test their congestion
control behavior and ECN and SACK capabilities [22].
The client-only methodology leverages existing public
web servers to give great coverage, allowing the authors
to examine the behavior of many different TCP imple-
mentations.

The study focuses on remote TCP implementations
rather than middlebox interactions; the same methodol-
ogy is not applicable for this middlebox study for three
reasons. First, most users access the Internet through
home and cellular networks, yet few public servers exist
in these networks that could be used for tests. Further,
it is not possible to test qualitative middlebox behav-

ior without co-ordination of both end systems. Finally,
the Padhye and Floyd techniques cannot distinguish the
effects due to middleboxes from the particularities of re-
mote TCP implementations and remote hardware (such
as segmentation offload).

Medina et al. measure in their 2005 study the im-
pact of network middleboxes on path MTU discovery
transparency, sequence number shifting, as well as their
effect on IP and TCP options [20]. This study under-
takes similar client-only measurements as in [22], and
suffers from the same limitations.

Allman [1] and Hätönen et al. [14] both examine the
quantitative application-level performance of various mid-
dleboxes in testbeds where the box being tested is known
and under their control. Allman measures transaction
delay, throughput and connection persistence over the
middleboxes he evaluated. Hätönen et al. measure
NAT binding timeouts, queueing delays, throughput
and support of new transport protocols over their testbed
which includes a large number of home-gateway devices.
We adopt the end-to-end methodology of these papers
and extend it further to examine the qualitative mid-
dlebox behavior that we are interested in in the real
Internet.

Paxon measures end-to-end packet dynamics such as
out-of-order delivery, packet corruption and retransmis-
sion on TCP bulk transfers [23]. The author operates
both end systems of each end-to-end measurement by
remote login; this limits the applicability of the study to
networks where the authors have (or are given tempo-
rary) direct access to hosts. This poses two challenges:
first, obtaining shell access to users’ machines to run
privileged commands is really difficult; second, even if
permitted, accessing NATed boxes is not possible unless
users specifically open up NAT ports. To avoid these is-
sues we adopted the alternative approach of asking con-
tributors to run a single, publicly-available, shell script
and to upload the results.

3. METHODOLOGY AND DATASETS
We use regular end-hosts to actively measure paths

in the Internet. Our aim is to test relevant properties
that could impact yet-to-be-deployed TCP extensions.
We have resorted to active measurement for a number
of reasons:

• We need to generate traffic that mimics new TCP
extensions.

• We generate artificial traffic patterns such as con-
tiguous small segments or gaps in the sequence
space. It is difficult to use passive measurements
for this purpose.

• Packets need to be inspected at both sender and
receiver for tests detecting TCP option removal,
sequence number shifting, re-segmentation, etc.

2



Table 1: Default TCP Parameters

Parameter Initiator Responder
Initial Sequence Num (ISN) 252001 11259375

Window Size 8064 32768

MSS 512 512

Window Scale - 6

SACKOK - 1

Timestamp (TS val) - 12345678

• We need to test different destination ports includ-
ing ports not normally in use, as middlebox be-
havior depends on the destination port.

3.1 Testing Tool
Our middlebox inspection tool is called TCPExpo-

sure and consists of an initiator and a responder tool.
These are a 3000-line program and a 500-line program
both written in Python. The initiator (acting like a
TCP client) and the responder (the TCP server) run
tests aiming to trigger on-path middlebox actions. The
tools send and receive TCP segments in user space via
a raw IP socket or using the Pcap library similarly to
Sting [25].

The client tool was built to be easy to use, as most of
our tests are run by contributors. To maximize reach,
the client tool is cross-platform running on Mac OS,
Linux and FreeBSD. It is self-contained and only re-
quires Python and libpcap on the host; these come pre-
installed on most systems. The client is straightforward
to run: all users need to do is to download it, run it and
post the results.

The responder tool runs on a Linux server we control.
It does not maintain state for the TCP connections it is
emulating; its replies depend solely on the received TCP
segments. For example, the responding segment con-
tains SYN/ACK if the responder has received SYN, ac-
knowledges the end of the sequence number, and has the
sequence number based on the received acknowledge-
ment (ACK) number. This stateless behavior makes it
relatively easy to reason about observed behavior be-
cause there is no hidden server state.

3.2 Common Procedures
Table 1 lists the fixed TCP parameters at the initiator

and the responder. These values are used in all our
measurements unless stated otherwise.

We use a 512 byte MSS at both ends, less than what
most TCP implementations advertise. This value is
smaller than the MTU of most Internet paths, and was
chosen to avoid unexpected fragmentation during tests.

We expect middleboxes to behave differently depend-
ing on the application type, and so our responder emu-

IP/TCP

Header A
Special bytes

padding
IP/TCP

Header B

IP/TCP

Header A

IP/TCP

Header B

Payload

Payload

Initiator Responder

Initiator Responder

Figure 1: Echo Headers Command

lates TCP servers on ports 80, 443, and 34343. Ports 80
and 443 are assigned by IANA for http and https traffic;
port 34343 is unassigned. The client port is randomly
chosen at connection setup.

Segments sent from the initiator include commands to
operate the responder. The default command is “just
ack”, and the responder sends back a pure ACK (no
data). Another command is “echo headers”. Fig. 1
illustrates how this command works.

The initiator transmits a crafted segment that in-
cludes bytes indicating this command in its payload.
The responder replies with a segment that contains in
its payload both the received headers and the headers
of the reply. The client then compares the sent and re-
ceived headers for both segments to detect middlebox
interference. The last command is “don’t advance ack”.
The responder does not advance the ACK number when
it receives this command; instead it sends back an ACK
with the first sequence number of the receiving segment.
This command is used in only the retransmission test
in Sec. 4.5.

3.3 Measurement Data
Our measurements target access networks, where ISPs

deploy middleboxes to optimize various applications with
the goal of improving the experience of the majority
their customers. The core is mostly just doing “dumb”
packet forwarding. Many contributors and we ran the
TCPExposure client in a variety of access networks de-
tailed below. We ran the server tool (the responder) in
sfc.wide.ad.jp, a middlebox-free network.

From 25th September 2010 to 30th April 2011, we
measured 142 access networks in 24 countries. Table 2
shows the venues and the network types of the experi-
ments.

Access networks are categorized in six types. Home
networks consisting of a consumer ISP and a home-
gateway are labeled as Home. Public hotspots for ex-
ample in cafes, airports, hotels, and conference halls are
labeled as Hotspot. Mobile broadband networks such as
3G and WiMAX are labeled as Cellular. Networks in
universities are labeled as Univ. We count two different
networks (e.g., the lecture and the residence segments)

3



Table 2: Experiment Venues

Country Home HotspotCellularUniv Ent Hosting Total

Australia 0 2 0 0 0 1 3
Austria 0 0 0 0 1 0 1
Belgium 4 0 0 1 0 0 5
Canada 1 0 1 0 1 0 3
Chile 0 0 0 0 1 0 1
China 0 7 0 0 0 0 7
Czech 0 2 0 0 0 0 2

Denmark 0 2 0 0 0 0 2
Finland 1 0 0 3 2 0 6
Germany 3 1 3 4 1 0 12
Greece 2 0 1 0 0 0 3

Indonesia 0 0 0 3 0 0 3
Ireland 0 0 0 0 0 1 1
Italy 1 0 0 0 1 0 2
Japan 19 10 7 3 2 0 41

Romania 1 0 0 0 0 0 1
Russia 0 1 0 0 0 0 1
Spain 0 1 0 1 0 0 2

Sweden 1 0 0 0 0 0 1
Switzerland 2 0 0 0 0 0 2
Thailand 0 0 0 0 2 0 2

U.K. 10 4 4 2 1 1 22
U.S. 3 4 4 0 4 2 17

Vietnam 1 0 0 0 1 0 2

Total 49 34 20 17 17 5 142

in the same university as two university networks. En-
terprise networks (also including small offices) are la-
beled as Ent. Networks in hosting services are labeled
as Hosting.

4. TESTS AND RESULTS

4.1 TCP Option Tests
TCP Options are the intended mechanism by which

TCP can be extended. Standardized and widely imple-
mented options include Maximum Segment Size (MSS),
defined in 1981; Window Scale, defined in 1988; Times-
tamp, defined in 1992; and Selective Acknowledgment
(SACK), defined in 1996. IANA also lists TCP options
defined since 1996, but SACK is the most recently de-
fined option in common use, and predates almost all of
today’s middleboxes. The question we wish to answer
is whether it is still possible to rapidly deploy new TCP
functionality using TCP options by upgrades purely at
the end systems.

Unknown TCP options are ignored by the receiving
host. A TCP extension typically adds a new option to
the SYN to request the new behavior. If the SYN/ACK
carries the corresponding new option in the response,
the new functionality is enabled. Middleboxes have the
potential to disrupt this process in many ways, prevent-
ing or at least delaying the deployment of new function-

ality.
If a middlebox simply removes an unknown option

from the SYN, this should be benign - the new function-
ality fails to negotiate, but otherwise all is well. How-
ever, removing an unknown option from the SYN/ACK
may be less benign - the server may think the func-
tionality is negotiated, whereas the client may not. Re-
moving unknown options from data packets, but not
removing them from the SYN or SYN/ACK would be
extremely problematic: both endpoints would believe
the negotiation to use new functionality succeeded, but
it would then fail. Finally, any middlebox that crashes,
fails to progress the connection, or explicitly resets it
would cause significant problems.

To distinguish possibly problematic behaviors, we per-
formed the following tests:

1. Unknown option in SYN. The SYN and SYN/ACK
segments include an unregistered option.

2. Unknown option in Data segment. The test
includes unknown options in data segments sent
by client and server.

3. Known option in Data Segment. The test
includes a well-known option in data segments sent
by client and server.

All three tests are performed using separate connec-
tions. Test 3 is included to allow us to determine whether
it is the unknown nature of the option that causes a be-
havior, or just any option. For test 1, we use a draft
version of the MP Capable option for MPTCP [10]
and for test 2 we use MPTCP’s MP Data option; nei-
ther is currently registered with IANA, and no known
middlebox yet supports them. On receipt of a SYN
with MP Capable, our responder returns a SYN/ACK
also containing MP Capable, mimicking an MPTCP
implementation.

For test 3, we used the Timestamp option [15], which
is not essential to TCP’s functionality, but which is
commonly seen in TCP data segments. This option
elicits a response from the remote endpoint; a state-
ful middlebox may also respond, allowing us to identify
such middleboxes.

In the unknown option in SYN test, our code tests
for the following possible middlebox behaviors:

• SYN is passed unmodified.
• SYN containing the option is dropped.
• SYN is received, but option was removed.
• Option is received, but with a modified value.
• Option is received, but with a zeroed value.
• Connection is reset by the middlebox.

In the unknown and the known option in data tests,
we test for the same behaviors as in the SYN test. Af-
ter a normal handshake, we transmit a full-sized TCP

4



Table 3: Unknown Option in Syn
Observed TCP Port
Behavior 34343 80 443
Passed 129 (96%) 122 (86%) 133(94%)
Removed 6 (4%) 20 (14%) 9 (6%)
Changed 0 (0%) 0 (0%) 0 (0%)
Error 0 (0%) 0 (0%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

Table 4: Known Option in Data
Observed TCP Port
Behavior 34343 80 443
Passed 129 (96%) 122 (86%) 133 (94%)
Removed 6 (4%) 9 (6%) 6 (4%)
Changed 0 (0%) 4 (3%) 3 (2%)
Error 0 (0%) 7 (5%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

Table 5: Unknown Option in Data
Observed TCP Port
Behavior 34343 80 443
Passed 129 (96%) 122 (86%) 133(94%)
Removed 6 (4%) 13 (9%) 9 (6%)
Changed 0 (0%) 0 (0%) 0 (0%)
Error 0 (0%) 7 (5%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

segment including MP Data or Timestamp, using the
method described in Sec. 3.2 to identify what the re-
sponder received. We also look for middleboxes that
split the connection, processing the Timestamp at the
middlebox on either the inbound or outbound leg.

Middlebox Behavior on TCP Options
Tables 3-5 summarize the results of the options tests.
142 paths were tested in total; for ports 80 (http) and
443 (https), we obtained results from all paths for all
tests. However seven paths did not pass the unreg-
istered port 34343, even with regular TCP SYN seg-
ments. These paths appear to run strict firewall rules
allowing only very basic services.

Most of the paths we tested passed both known and
unknown TCPs options without interference, both on
SYN and Data packets. The results are port-specific
though; 96% of paths passed options on port 34343,
whereas only 80% of paths passed options on port 80.
This agrees with anecdotal evidence that http-specific
middleboxes are relatively common.

All the paths which passed unknown options in the
SYN also passed both known and unknown options in
data segments. In the tables, the “Removed” rows in-
dicate that packets on that path arrive with the option
removed from the packet. For the unknown options in
the SYN packet, this was the only anomaly we found; no

path modified the option or failed to deliver the packet
due to its presence. In addition, all the paths which
passed the unknown option in the SYN also passed un-
known options in data segments. This bodes well for
deployability of new TCP options - testing in the SYN
and SYN/ACK is sufficient to determine that new op-
tions are safe to use throughout the connection.

Our test did not distinguish between middleboxes
that stripped options from SYNs and those that stripped
options from SYN/ACKs. With hindsight, this was an
unfortunate limitation of our methodology that uses
a stateless responder. However it is clear that any
extension using TCP options to negotiate functional-
ity should be robust to stripped unknown options in
SYN/ACK packets, even if they are passed in SYNs. If
it is crucial that the server knows whether or not the
client received the option in the SYN/ACK, the proto-
col must take this into account. For example, TcpCrypt
requires that the first non-SYN packet from the client
contains the INIT1 option - if this is missing, TcpCrypt
moves to the disabled state and falls back to regular
TCP behavior.

For port 34343, the only behaviors seen were passing
or removing options. The story is more complicated for
port 80 (http) and 443 (https). First, there were seven
paths that did not permit our testing methodology on
port 80. In data packets our stateless server relies on
instructions embedded in the data to determine its re-
sponse. These seven paths appear to be application-
level HTTP proxies, and we were foiled by the lack of a
proper HTTP request in our data packets. They are la-
beled Error in the tables. We were able to go back and
manually verify two of these paths were in fact HTTP
proxies; we did not get a second chance to verify the
other five. All seven were in the set that removed op-
tions from SYN packets, which is to be expected if they
are full proxies.

There were no other unexpected results with unknown
options, but we did observe some interesting results
with the Timestamp “known option in data” test. Four
paths passed on a Timestamp option to the responder,
but it was not the one sent by the initiator. In these
cases, although the responder sent Timestamp in re-
sponse, this was not returned to the initiator. This
implies that the middlebox is independently negotiat-
ing and using timestamp with the server. These paths
are labeled “Changed” in the tables.

Returning to the middleboxes that remove unknown
options from the SYN, we can use the results of addi-
tional tests to classify these into two distinct categories.
In the first category, the SYN/ACK received is essen-
tially that sent by the responder, whereas in the second
the SYN/ACK appears to have been generated by the
middlebox. In Sec. 4.4 we explain how fingerprints in
the SYN/ACK let us distinguish the two. Paths in the

5



Table 6: Types of removal behavior (SYN)
Path Other Observed TCP Port
Type Effects 34343 80 443
Elim. None 5 4 5

Proxy Proxy SYN-ACK 1 16 4
Total 6 20 9

Table 7: Types of removal behavior (Data)
Path Other observed TCP Port
Type effects 34343 80 443
Elim. None 5 4 5

Proxy Proxy Data ACK,
Segment Caching,
Re-segmentation

1 9 4

Total 6 13 9

first category appear to actively eliminate options (we
label them “Elim” in Table 6), whereas a middlebox in
the second category is acting as a proxy, and unknown
options are removed as a side effect of this proxy be-
havior (these are labeled “Proxy”).

These two categories (Elim and Proxy) also hold when
we look at data segments (see Table 7). Paths that elim-
inate SYN options also eliminate data options, whereas
paths that show proxy behavior on SYNs also exhibit
proxy behavior for data. In particular, the proxy symp-
toms we see are Proxy Data ACKs (ACK by the mid-
dlebox, see Sec. 4.4), segment caching (the middlebox
caches and retransmit segments, see Sec. 4.5), and re-
segmentation (splitting and coalescing of segments, see
Sec. 4.6). These proxy middleboxes show symptoms of
implementing most of the functionality of a full TCP
stack, rather than just being a packet-level relay.

Before we ran this study, anecdotal evidence had sug-
gested that cellular networks would be much more re-
strictive than other types of network. The results par-
tially support this, as shown in Table 8. For port 80,
eight out of 20 cellular networks that we tested remove
options; six of the eight proxy the connection. WiFi
hotspots are also relatively likely to remove options or
proxy connections, especially for http. Overall though,
the majority of paths do still pass new TCP options.

We conclude that it is still possible to extend TCP
using TCP options, so long as the use of new options is
negotiated in the SYN exchange, and so long as fallback
to regular TCP behavior is acceptable. However, if we
want ubiquitous deployment of a new feature, the story
is more complicated. Especially for http, there are a
significant number of middleboxes that proxy TCP ses-
sions. For middleboxes that eliminate options, it seems
likely that very simple updates or reconfiguration would
allow a new standardized option to pass, assuming it

Table 8: Option removal by Network Type
Remove option (Proxy conn)

Network Type port 34343 port 80 port 443
Cellular (out of 20) 4 (1) 8 (6) 4 (1)
Hotspot (out of 34) 1 (0) 6 (5) 4 (3)
Univ (out of 17) 0 (0) 3 (3) 0 (0)
Ent (out of 17) 1 (0) 3 (2) 1 (0)

Total 6 20 9

Table 9: Sequence Number Modification Test

TCP Port
Behavior 34343 80 443
Unchanged 126 (93%) 116 (82%) 128 (90%)
Mod. outgoing 5 (4%) 5 (4%) 6 (4%)
Mod. incoming 0 (0%) 1 (1%) 1 (1%)
Mod. both 4 (3%) 13 (9%) 7 (5%)
Proxy (probably
mod. both)

0 (0%) 7 (5%) 0 (0%)

Total 135 (100%) 142 (100%) 142 (100%)

were not considered a security risk. But for transpar-
ent proxies, the middlebox would not only need to pass
the option, but also understand its semantics. Such
paths are likely to be more difficult to upgrade.

4.2 Sequence Number Modification
TCP Selective Acknowledgement (SACK) [19] is an

example of a TCP extension that uses TCP options
that quote sequence numbers, in this case to indicate
precisely which segments arrived at the receiver. How
might middleboxes affect such extensions?

In our sequence number modification test, we exam-
ine both the outgoing and incoming initial sequence
number (ISN) to see whether middleboxes modify the
sequence numbers sent by the end-systems.

As table 9 shows, sequence numbers on at least 80%
of paths arrive unchanged. However 7% of paths mod-
ify sequence numbers in at least one direction for port
34343 and 18% modify at least one direction for TCP
port 80. For port 80, the same seven paths identified
earlier as having application-level HTTP proxies cannot
be tested outbound, but do modify inbound sequence
numbers and almost certainly modify both directions.

One might reasonably expect that middleboxes that
proxy a connection would split a TCP connection into
two sections, each with its own sequence space, but that
other packet-level middleboxes would have no reason to
modify TCP sequence numbers. If this were the case,
then TCP extensions could refer to TCP sequence num-
bers in TCP options, safe in the knowledge that either
the option would be removed in the SYN at a proxy,
or sequence numbers would arrive unmodified. Unfor-
tunately the story is not so simple.

6



At a TCP receiver, one use of sequence numbers is
to verify the validity of a received segment. If an ad-
versary can predict the TCP ports a connection will
use, only the randomness of the initial sequence num-
ber prevents a spoofed packet from being injected into
the connection. Unfortunately TCP stacks have a long
history of generating predictable initial sequence num-
bers, so a number of firewall products try to help out by
choosing a new more random ISN, and then rewriting
all subsequent packets and acknowledgments to main-
tain consistency [13, 28].

We compared those paths that pass unknown options
in the SYN with those that modify sequence numbers in
at least one direction. On port 34343, 5 out of 9 allow
unknown options and still modify the sequence num-
bers. For port 80, 7 out of 26 pass unknown options,
and for port 443 it is 7 out of 14. The numbers are the
same for unknown options in data packets.

We conclude that it is unsafe for TCP extensions to
embed sequence numbers in TCP options (or anywhere
else), even if the extension negotiates use via a new
option in the SYN exchange.∗

4.3 Sequence Space Holes
TCP is a reliable protocol; its cumulative Ack does

not move forwards unless all preceding segments have
been received. What would happen if from the vantage
point of a middlebox, a TCP implementation violated
these rules? Perhaps it wished to implement partial
reliability analogous to PR-SCTP [27], or perhaps it
simply stripes segments across more that one path in a
similar manner to Multipath TCP?

We can distinguish two ways a middlebox might ob-
serve such a hole:

• Data-First: it sees segments before and after a
hole, but does not see the segment from the hole. If
the middlebox passes the segment after the hole, it
sees it cumulatively acked by the recipient, despite
the middlebox never seeing the data from the hole.

• Ack-First: It sees a segment of data, then an
ack indicates the receiver has seen data not yet
seen by the middlebox. If the middlebox passes
the Ack, the next segment seen continues from the
point acked, leaving a hole in the data seen by the
middlebox.

These form the basis of our tests shown in Fig. 2.
Table 10 shows the result of the data-first sequence

hole test. Paths where the second Ack was correctly
∗SACK does embed sequence numbers in options, but it pre-
dates the existence of almost all middleboxes. We hope that
these middleboxes are aware of SACK and either rewrite
the options or explicitly remove SACK negotiation from the
SYN exchange.

Data, 512-1023

Data, 1536-2047

Ack 1023

Ack 2047

I R
Data: 512-1023

Data: 1536-2047, Ack 10512

Data: 10000-10512, Ack: 1535

I R

Figure 2: Sequence Hole Tests: data first (left) and ack
first (right)

Table 10: Data-First Sequence Hole Test

TCP Port
Behavior 34343 80 443
Passed 131 (97%) 120 (85%) 135 (95%)
No response 2 (1%) 6 (4%) 2 (1%)
Dup Ack 1 (1%) 9 (6%) 5 (4%)
Test Error 1 (1%) 7 (5%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

received are labeled Passed, and clearly have no mid-
dlebox that requires TCP flow reassembly. As before,
on port 80 there are seven paths with http proxies we
cannot fully test; these are labeled Test Error. The
one path using port 34343 labeled Test Error was due
to high packet loss during the experiment rather than
middlebox interference.

The remaining cases are the most interesting. We
observed two distinct middlebox behaviors:

• No response was received to the second data packet.

• A duplicate Ack was received, indicating receipt of
the first data packet and by implication, signaling
loss of the packet in the hole.

A middlebox implementing a full TCP stack would be
expected to break the path into two sections, separately
acking packets from the initiator before sending the
data on to the responder. This would give the Du-
plicate Ack behavior. As expected, we see more such
middleboxes on port 80.

A middlebox that does not respond to the second
packet is clearly maintaining TCP state (or it would
pass the second Ack), but it is not independently ack-
ing data. Its reasons for doing so are unclear - perhaps
it is attempting to analyse the stream contents and is
unwilling to pass an ack for data it has not seen? What-
ever the reason, we still see more such middleboxes on
port 80.

In the ack-first sequence hole test (Fig. 2, right), the
initiator acks a segment beyond that which is received
(i.e., proactive ack). The responder skips the data acked
and sends additional data following on from the point
that was acked. To allow us to send commands to the
responder, the segments from the initiator to the re-
sponder also contain data, but what we are interested

7



Table 11: Ack-first Sequence Hole Test

TCP Port
Behavior 34343 80 443
Passed 102 (76%) 95 (67%) 105 (74%)
No response 28 (21%) 28 (20%) 29 (20%)
Ack fixed 5 (4%) 11 (8%) 7 (5%)
Retransmitted 0 (0%) 1 (1%) 1 (1%)
Test Error 0 (0%) 7 (5%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

in is whether the proactive ack is received, and sub-
sequently whether the packet following the hole is re-
ceived. Table 11 shows the results.

The results of this test were a surprise - even on port
34343, middleboxes interfered with end-to-end behavior
24% of the time. As before, seven paths on port 80 could
not be tested. Of those that could be tested, we saw
three distinct behaviors:

• On around 20% of paths we saw no response to
the proactive ack. Either the proactive ack was
dropped or the packet above the hole was dropped,
but the lack of a response does not allow us to
distinguish.

• On quite a few paths (labeled Ack fixed), the proac-
tive ack was re-written by the outgoing middlebox
to indicate the highest data cumulatively seen by
the middlebox.

• On one path on ports 80 and 443, the middlebox
itself actually retransmitted the last packet sent by
the responder from before the hole.

It is clear from these results that TCP extensions re-
lying on sequence number holes are unsafe. Although
some of the results can be explained by proxy behav-
ior at middleboxes, some paths that did not exhibit
clear proxy behavior (by performing separate acknowl-
edgment) do affect both sequence holes and pro-active
acking. Perhaps some firewalls attempt to protect the
initiator from potentially malicious proactive acks? [26].

One interesting observation is that around 10% of
home networks give no response in the ack-first sequence
hole test. This is striking because none of the home net-
works strip unknown options.

4.4 Proxy Acknowledgments
In Tables 6 and 7 we observed that a subset of the

paths that remove TCP options appear to show TCP
proxy behavior. We now elaborate on the tests we used
to elicit this information.

A hypothetical TCP proxy[2] would likely split the
TCP connection into two sections; one from the client
to the proxy and one from the proxy to the server. Each

Initiator Responder

don’t advance ack
Seq. 

20513-21025
Seq. 

20001-20513

Seq. 
20513-21025

ACK 
20513

ACK 
20513

Figure 3: Retransmission Test

section would effectively run its own TCP session, with
only payload data passed between the two sections. Are
the proxies we observed of this form, which is fairly easy
to reason about, or is their behavior more complex?

One symptom of a TCP proxy would be that acknowl-
edgments for data are locally generated by the middle-
box. We performed two tests examining this behavior:

• Proxy SYN-ACK: Is the SYN/ACK locally gen-
erated by the proxy? In its SYN/ACKs, our re-
sponder generates quite characteristic values for
the initial sequence number, advertised receive win-
dow, maximum segment size, and Window Scale
options. It is improbable that a proxy would gen-
erate these values. We simply check the value of
these fields in the SYN/ACK received by the ini-
tiator - if they differ then this is symptomatic of a
proxy that crafts its own SYN/ACKs.

• Proxy Data Ack: Is data acknowledged by the
proxy before delivering it to the destination? Our
initiator sends a data packet to the responder, re-
questing the ack is sent on a packet that includes
data. If the ack received does not include data, it
is extremely likely it was generated by the proxy
rather than the responder.

Neither test is conclusive by itself, but taken together
they give a good picture of proxy behavior. As before,
there are seven paths which have HTTP-level proxies;
on port 80, all seven sent proxy SYN/ACKs, but could
not be tested for proxy data acks. Tables 6 and 7 show
the number of proxies identified. The set of paths show-
ing Proxy SYN/ACK behaviour is precisely the same as
those showing either Proxy Data Ack or HTTP proxy
behavior. Taken together, these tests provide good ev-
idence for proxies of the form described above.

4.5 Inconsistent Retransmission
If a TCP sender retransmits a packet, but includes

different data than the original in the retransmission,
what happens? This might seem like a strange thing
to do, but it might be advantageous for extensions that
do not need stale data (such as VoIP over TCP). Given
that we know sequence holes are a bad idea (Section

8



Table 12: Results of Retransmission Test

TCP Port / Retransmitting size
Observed
Behavior

34343 80 443
same smaller larger same smaller larger same smaller larger

Passed 134 (99%) 134 (99%) 132 (98%) 124 (87%) 124 (87%) 123 (87%) 138 (97%) 138 (97%) 136 (96%)
No response 0 (0%) 0 (0%) 1 (1%) 0 (0%) 0 (0%) 1 (1%) 0 (0%) 0 (0%) 1 (1%)
Ack adv’ced 1 (1%) 1 (1%) 1 (1%) 10 (7%) 10 (7%) 10 (7%) 4 (3%) 4 (3%) 3 (2%)
Reset conn 0 (%) 0 (0%) 0 (0%) 1 (1%) 1 (1%) 1 (1%) 0 (0%) 0 (0%) 0 (0%)
Error 0 (0%) 0 (0%) 1 (1%) 7 (5%) 7 (5%) 7 (5%) 0 (0%) 0 (0%) 1 (1%)
Total 135 (100%) 142 (100%) 142 (100%)

4.3), it might make sense to fill the sequence hole with
previously unsent data.

Such inconsistent retransmissions would be explicitly
“corrected” by a traffic normalizer[13], as its role is to
ensure that any downstream intrusion detection system
sees a consistent picture. Equally, depending on their
implementation, TCP proxies might reassert the origi-
nal data. We set out to test what happens in reality.

Fig. 3 shows our retransmission test. The initiator
sends two consecutive segments, but we request that
the responder sends a cumulative ack only for the first
segment, then a duplicate Ack. Any stateful middle-
box will infer that the second segment has not been
received by the responder, and depending on its imple-
mentation, it may retain the unacked segment. We then
send a “retransmission” of the second packet, but with a
different payload (one that requests the responder echo
the packet headers so we can see what is received).

We also repeat the test, but with the “retransmitted”
packet being either 16 bytes smaller or 16 bytes longer
than the original packet.

From the responses, we can distinguish four distinct
middlebox behaviors, as listed in Table:.

• Most paths passed the inconsistent retransmission
to the responder unmodified. In the case of port
34343, only one path did not do this.

• On some paths the initiator observes that the cu-
mulative Ack advanced, but the headers were not
echoed. This implies that the middlebox cached
the original segment and resent it. Most of these
paths were ones that we had previously identified
as TCP proxies, but one on port 80 was not — it
caches segments but does not separately ack data.
We cannot know for sure, but this would be symp-
tomatic of a traffic normalizer.

• One path returned no response at all when the in-
consistent retransmit was larger than the original,
and did so for all ports. There is no obvious rea-
son for such behavior, so we speculate it might be
a minor bug in a middlebox implementation.

• One path on port 80 reset the connection. This
seems to be a fairly draconian response.

The usual seven paths with HTTP proxies could not be
tested. One other path also failed to complete the test
due to high packet loss.

Overall, any extension that wished to use inconsis-
tent retransmissions would encounter few problems, so
long as it did not matter greatly whether the original or
the retransmission actually arrives. The one path that
resets connections might however give the designers of
extensions cause for concern.

We note that the proposal for TCP extended options
might result in retransmissions that appear inconsistent
to legacy middleboxes, even if the payload is consistent.
This might occur if the value of an extended option
such as a selective acknowledgment changes between the
original and the retransmission.

4.6 Re-segmentation
TCP provides a reliable bytestream abstraction to ap-

plications, and makes no promises that message bound-
aries are preserved. Some TCP extensions such as
TcpCrypt wish to associate a new option with a partic-
ular data segment — in the case of TcpCrypt to carry a
MAC for the data. How will such extensions be affected
by middleboxes?

We expect that TCP proxies will coalesce small seg-
ments if a queue builds in the proxy, and might split
segments if the proxy negotiates a larger MSS with the
client than that negotiated by the server. However, our
results show such proxies remove unknown options from
the SYN exchange, so any adverse interaction (beyond
falling back to regular TCP) is unlikely. Our concern
therefore is whether there are middleboxes that are not
proxies that re-segment packets. In particular, any mid-
dlebox that passes new options and also re-segments
data might be problematic.

To test resegmentation we simply advertise a rela-
tively small 512 byte MSS. Any middlebox advertising
a more normal (larger) MSS will be forced to reseg-
ment larger data packets into smaller ones. In fact,
MSS advertised by 16 SYN proxies we observed at port

9



Seq. 
20001-20257

Initiator Responder

Seq. 
20513 - 21025

Seq. 
20257-20513

Figure 4: Segment Coalescing Test

Initiator Responder

Seq. 
20513-20769

Seq. 
20001 - 20513

Seq. 
20769-21025

Figure 5: Queued Segment Coalescing Test

80 varied between 1372 - 1460 bytes. We also test to
see if unknown options (MP DATA) or known options
(Timestamp) are copied to the split segments.

We found that 1 path on port 34343, 9 paths on port
80 and 4 paths on port 443 split segments in this way.
These are the same paths identified as proxies in Ta-
ble 6. None passed options to the split segments.

The opposite of segment splitting is segment coalesc-
ing, where a middlebox combines two or more segments
into a larger segment. To test for this, we must send two
consecutive small segments and observe whether a sin-
gle larger segment arrives. However, a middlebox that
has the ability to coalesce might still not do so unless it
is forced to queue the segments. We therefore perform
two versions of the test, as shown in figures 4 and 5.

• We test if segments are coalesced if the two small
segments arrive in order (Fig. 4).

• We reorder the segments so that the small seg-
ments arrive after a gap in the sequence space,
creating an opportunity for middleboxes to queue
them (Fig. 5). We then send the segment which
fills the sequence hole. If a middlebox queued the
small segments, this will release them, potentially
allowing coalescing to occur.

As before, we repeat the tests without options and with
both known and unknown options.

Table 13 shows the results. We expected few mid-
dleboxes to coalesce in the in-order test (labeled Coal.
ordered), but one path only coalesces in this case, and
does not in the queued case. Other than this, the mid-
dleboxes running TCP proxies coalesce as expected. No
middlebox copies either known or unknown options to
the coalesced segments.

As before, on port 80 seven HTTP proxy paths could
not be tested. Three other cases gave unexpected re-
sults. One path on port 34343 failed to complete all
the tests, but appears not to coalesce when options are
present. One path on port 80 returned no payload in the
acks; other tests show this path does not show proxy be-
havior but does cache segments, does pass TCP options,

Table 13: Results of Segment Coalescing Test
Observed
Behavior

TCP Port
34343 80 443

Passed 132 (98%) 123 (87%) 138 (97%)
Coal. ordered 1 (1%) 1 (1%) 0 (0%)
Coal. queued 1 (1%) 3 (2%) 1 (1%)
Coal. both 0 (0%) 6 (4%) 3 (2%)
Error 1 (0%) 9 (6%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

but gives no reply to discontiguous sequence numbers.
Likely it is also ignoring out of order segments in this
test too. We do not know what form of middlebox this
is, but its behavior seems fragile.

Finally, one non-proxy path did coalesce segments
on ports 80 and 34343, but passed all the other tests.
Interestingly, it only coalesced when options were not
present.

Among those paths that coalesced, we saw quite a va-
riety of behavior. The two small segments we sent were
of 244 bytes. When coalescing occurred, depending on
the path, the first coalesced segment received could be
of 256, 488, 500 or 512 bytes in the first test and 256,
476 or 488 bytes in the second test. We have no idea
what motivates these particular segment sizes.

Overall, the story is quite good for TCP extensions.
Although middleboxes do split and coalesce segments,
none did so while passing unknown options (indeed one
changed its behavior when options were present). Thus
is seems relatively safe to assume that if an option is
passed, it arrives with the segment on which it was sent.

4.7 Intelligent NICs
Most of the experiments in this paper probe the net-

work behavior, but with the rise of “intelligent” Net-
work Interface Cards, even the NIC can have embedded
TCP knowledge. Thus the NIC itself might fight with
new TCP extensions.

We are concerned in particular with TCP Segmenta-
tion Offload (TSO), where the host OS sends large seg-
ments and relies on the NIC to resegment to match the
MTU or the receiver’s MSS. In Linux, TSO is accessed
through a Generic Segmentation Offload (GSO) API.
With GSO, the split segment size is chosen to allow all
the IP options to be copied to all the split segments
while still fitting within the MTU. But what do NICs
actually do — do they really copy the options to all the
split segments?

We tested eleven TSO NICs from four different ven-
dors; Intel (82546, 82541GI, 82566MM, 82577LM, 82567V),
Nvidia (MCP55), Broadcom (BCM95723, BCM5755)
and Marvell (88E8053, 88E8056, 88E8059). For this,
our initiator tool consists of a user application and a
custom Linux kernel, and we reused the responder tool

10



from the earlier middlebox tests. The key points about
the experiment are:

• Our application calls write() to send five MSS of
data to the socket layer at one time.

• The OS TCP stack composes one TCP segment
that includes all the data and passes it to the GSO
stack. This large segment also includes the Times-
tamp or Mp Data TCP options.

• The NIC performs TSO, splitting the large seg-
ment into multiple segments and transmits them.

• Our responder receives these segments and responds
with a segment echoing the headers in its payload
so we can see what was received.

All the NICs we tested correctly copied the options
to all the split segments. TSO is now sufficiently com-
monplace that designers of extensions to TCP should
assume it may be encountered. The implication is that
TCP options must be designed so that when they are
duplicated on consecutive segments, this does not ad-
versely affect correctness or performance.

5. PROTOCOL DESIGN IMPLICATIONS

5.1 Multipath TCP
As more and more mobile devices come equipped with

multiple network interfaces such as 3G and WiFi, sin-
gle path transport is fundamentally unable to utilize
the aggregate capacity and robustness of the separate
links. Multipath TCP (MPTCP) [24, 29] enables each
TCP connection to be striped across multiple paths,
while offering the same reliable, in-order, byte-oriented
transport service to unmodified applications.

At first sight, MPTCP seems straightforward to im-
plement, but the design has been evolving for a couple
of years now, with most changes aimed at accommo-
dating the middleboxes deployed today in the Internet.
The experimental results described in this paper have
guided the design, now undergoing standardization at
the IETF.

To negotiate MPTCP, the endpoints use the
Mp Capable TCP option on SYN packets; they fall
back to regular TCP if either endpoint does not sup-
port MPTCP or middleboxes along the path remove
the new option. Our results indicate that if the op-
tion handshake goes through, MPTCP options will also
be allowed on data segments. To be on the safe side
though, MPTCP reverts to regular TCP if its options
do not get through on any of the data segments sent
during the first RTT of the connection.

Sequence numbers are fundamental to the MPTCP
design. It would be easiest to reuse the TCP sequence
numbers by striping segments coming from the TCP
stack across different paths (e.g., by selecting different

addresses for the same endpoint). A shortcoming of this
approach is that, on each path, MPTCP subflows will
look like TCP flows with holes in their sequence space.
Our results show that quite a few middleboxes will not
allow these flows to pass, and so MPTCP had to use
one sequence space per subflow to pass through mid-
dleboxes. This in turn implies the need to add an addi-
tional data-level sequence number to allow the receiver
to put segments back in order before passing them to
the application.

How should the sender signal the data sequence num-
bers to the receiver? There are two possibilities: use
TCP options or embed them in the TCP payload. Send-
ing control information in the payload implies some
form of payload chunking, similar to TLS-style TLV
encoding. This would make it difficult for future mid-
dleboxes to work with MPTCP, as they would be forced
to parse the payload. Architecturally, it is cleaner to
encode data sequence numbers as TCP options.

The simplest solution is use a TCP option to add
a data sequence number (DSN) to each segment. Al-
though we observed no middlebox that both passed op-
tions and resegmented data, NICs performing TCP Seg-
mentation Offload (TSO) would replicate the data se-
quence number onto multiple segments. Multiple seg-
ments would then have the same DSN — not what is
desired.

Such a failure is a consequence of an implicit mapping
of subflow sequence numbers (in the TCP headers) to
data sequence numbers (in the options). The solution
adopted by MPTCP is to make this mapping explicit:
a data sequence mapping option carries the starting
data sequence number, the starting subflow sequence
number and the length of the mapping. To complicate
things more, we have seen than subflow sequence num-
bers may be rewritten by firewalls. To avoid this prob-
lem, MPTCP signals subflow sequence numbers relative
to the initial subflow sequence number. This solution
makes MPTCP compatible with all the paths we ob-
served.

Finally there is one form of application level gateway
we did not test for - a NAT with knowledge of FTP
or SIP that rewrites IP addresses in the TCP payload.
Such rewriting can change the payload length and would
be really bad for MPTCP: Reordering at the receiver
might result in arbitrary-ordered data being passed to
the application. MPTCP includes a checksum in the
DSN mapping option to guard against such payload
changes, and falls back to single path TCP if required.

There are many more design decisions in MPTCP
that were dictated by verified, anecdotal or just possible
middlebox behaviours. We quickly list two here:

• Retransmitting data: to avoid the problems we ob-
served with sequence holes, MPTCP always sends
the original data on retransmission, even though

11



that same data may already have been received by
the receiver via a different subflow.

• Proactive ACKing middleboxes might fail before
sending data to the receiver; this would halt MPTCP
if data-level ACKs were inferred from subflow ACKs.
Although we observed no pro-actively acking mid-
dlebox that would pass MPTCP options, MPTCP
includes a data-level acknowledgement, sent as a
TCP option, to guard against such failures.

MPTCP was designed from ground up to co-exist
with current middleboxes and to play nicely with fu-
ture ones. The middlebox behaviour tests we have con-
ducted in this paper have provided a solid basis for
MPTCP’s design choices.

5.2 TcpCrypt
TcpCrypt is a proposed extension to TCP that oppor-

tunistically encrypts all TCP traffic [4]. TcpCrypt end-
points share a public key on the wire and use that to de-
rive a session key. After the initial handshake TcpCrypt
connections are secure against eavesdropping, segment
insertion or modification and replay attacks. During the
initial handshake, connections are susceptible to man-
in-the-middle or downgrade attacks, but TcpCrypt also
provides hooks to allow application-level authentication
of the encrypted connection.

TcpCrypt was motivated by the observation that server
computing power is the performance bottleneck. To
make ubiquitous encryption possible, highly asymmet-
ric public key operations are arranged so that the ex-
pensive work is performed by the client which does not
need to handle high connection setup rates. This is in
contrast to SSL/TLS where the server does more work.
This reversal of roles together with ever increasing com-
puting power makes it feasible to have “always on” pro-
tection [5].

Use of TcpCrypt is negotiated with new Crypt op-
tions in SYN segments, and keying material is included
in Init messages that are sent in both directions in the
TCP payload before application data is sent. The Init
exchange also probes the path support for new options
on data segments, thus coping with any middleboxes
that allow new options on SYNs but not on data. Af-
ter the initial negotiation, TcpCrypt can be either in
the encrypting or disabled states. In the disabled state
TcpCrypt behaves exactly like regular TCP. No further
transitions are allowed once the connection reaches one
of these two states [4]. This is because applications can
query the TcpCrypt connection state and use it to make
authentication decisions.

In the encrypting phase TcpCrypt encrypts the TCP
payload with the shared session key and also adds a
TCP Mac option to each segment that is validated at
the receiver. The keyed Mac covers the encrypted pay-

load as well as parts of the TCP header: the sequence
numbers, the TCP options, and the length, as well the
acknowledgement sequence number. The Mac covers
neither the TCP ports nor the IP header to allow net-
work address translation.

TcpCrypt only accepts segments whose Mac is cor-
rect; when the TCP Mac option is missing or incorrect
the segment is silently dropped. Hence, each segment
will have a unique Mac.

Middleboxes that resegment TCP packets would cause
TcpCrypt’s Mac to fail validation, causing the connec-
tion to stall. Unlike MPTCP, fallback to vanilla TCP
behavior after entering the encrypting state is not vi-
able. Fortunately we have not observed any paths that
both pass new TCP options and resegment data. TCP
Segmentation Offload would also cause TcpCrypt to
fail, but fortunately the OS can disable this — the per-
formance penalty is negligible compared to the cost of
encryption.

To guard against segment injection and replay at-
tacks the Mac needs to cover the TCP sequence num-
bers. This would fail when firewalls rewrite the ISN, so
TcpCrypt includes the number of bytes since the start
of the connection in the pseudo-header covered by the
Mac rather than the absolute sequence number.

The Mac also covers acknowledgement sequence num-
bers. Any proactive ACKs sent by middleboxes will just
be dropped. If no ACKs are passed end-to-end the con-
nection will fail. Fortunately, this problem is unlikely as
such boxes are proxies (See Sec. 4.4), and so would pre-
vent TcpCrypt negotiation in the initial handshake by
removing the SYN options. Finally, HTTP-level proxies
require a valid HTTP header, which TcpCrypt would
hide. However, such proxies also prevent the initial
handshake.

A key difference between TcpCrypt and MPTCP is
the distinction between disabled and enabled; when
TcpCrypt is enabled it gives extra security to applica-
tions, which then rely on the protection provided. Once
enabled it is unacceptable from a security point of view
to revert to TCP. MPTCP, on the other hand, provides
the same reliable, in-order, byte-stream service to ap-
plications, and can detect problems and revert to TCP
at almost any time during a connection’s lifetime.

5.3 Extending TCP Options
Extending TCP option space has been a discussion

topic on IETF mailing lists on many occasions, start-
ing as early as 2004. The main reason no solution was
standardized is because people felt there was no press-
ing need for more option space. MPTCP uses quite
a bit of option space, as does TcpCrypt; this usage,
combined with existing options in use, leaves very little
TCP option space remaining. With MPTCP approach-
ing standardization, extending the TCP option space

12



has now gained enough support to happen in practice.
Option space is scarce on both SYN and regular data

packets. Extending the option space on the first SYN
(active open) is difficult because of the need to be back-
ward compatible: if one adds more options to the SYN,
a legacy host might treat the extra options as applica-
tion data, corrupting the connection [17].

Extending the option space in regular segments seems
straightforward at first sight; the sending host simply
needs to “extend” the data offset field in the TCP header.
This is what the Long Option (LO) draft [8] suggests:
add a new LO option that a 16 bit-wide value of the
data offset. As with the other extensions we have dis-
cussed, resegmentation would be problematic here, but
we did not observe any middlebox that passes options
and resegments. Still, it would be good if the use of
long options did not preclude TCP Segmentation Of-
fload, and this solution would — every split segment
would appear to carry a long option when in fact only
the first would.

To allow TSO, the sender must be explicit about
the placement of extended options, and solutions will
resemble MPTCP’s data sequence mapping. The re-
ceiver will be told the start of extended options and
their length†.

The same constraints apply as in the case of MPTCP
signaling: the initial sequence number may be rewrit-
ten, thus the sequence number must be relative to the
beginning of the flow. If middleboxes change payload
length (for instance by rewriting IP addresses for FTP/SIP),
the extended option sequence numbers will be inaccu-
rate; a checksum covering the extra options is needed
to cover such cases.

Another problem with extending TCP option space
is the interaction between middleboxes that understand
deployed TCP options, such as SACK. A middlebox
might modify sequence numbers in both the header and
SACK blocks, but not understand the LO option. How-
ever, if the sender places a SACK block in the extended
option space, such middleboxes will not see it, and so
cannot correct the selective acknowledgment numbers.
We observed a significant number of middleboxes that
modify sequence numbers and pass the unknown TCP
options, so this problem does not seem hypothetical.

Segment caching middleboxes can also affect the LO
option. If the options in the payload differ between the
original and the retransmitted segments, the middlebox
will consider them as different application data. We ob-
served such segments could induce connection failures.

Work arounds are possible - SACK blocks would have
to be placed in the regular options space, and no option
in the extended option space would be allowed to change

†This is very much the functionality provided by the urgent
pointer, but this is known not to go well through middle-
boxes[12]

on a retransmission. But such workarounds rather limit
the usefulness of extended options and increase both
the complexity of implementations and the potential
for subtle bugs.

6. CONCLUSION
Our goal in this paper has been to determine whether

it is still possible to extend TCP. In particular, what
limitations are imposed on TCP extensions by mid-
dleboxes and by “intelligent” NIC hardware? To an-
swer these questions necessitated building novel mea-
surement tools and recruiting volunteers from all over
the world to run them on a wide range of networks.

From our results we conclude the middleboxes imple-
menting layer 4 functionality are very common — at
least 25% of paths interfered with TCP in some way
beyond basic firewalling. We also conclude that it is
still possible to extend TCP using its intended exten-
sion mechanism — TCP options — but that there are
some caveats. Here are some guidelines:

• Negotiate new features on the SYN exchange be-
fore use.

• Be robust if an option is removed from the SYN/ACK
- just because the server agrees to use a feature
does not mean the client sees that agreement.

• Assume segments will be split (by TSO) and op-
tions duplicated on those segments.

There are also some warning stories, regarding behavior
that is not safe to assume:

• Do not assume sequence numbers arrive unmodi-
fied - if you have to quote them, quote bytes from
the start of the connection rather than absolute
sequence numbers.

• Do not leave gaps in the sequence space - middle-
boxes need to see all the packets.

• Retransmitting inconsistent information is risky.

• Proxies are common, especially on port 80, and
will strip TCP options.

• If options are removed, don’t assume message bound-
aries will be preserved.

• Some middleboxes are surprisingly fragile to out
of order packets.

Based on this information, we looked at whether three
extensions to TCP had made sensible choices. We found
that for the most part they had; in fact they were rather
tightly constrained by middlebox behaviors to the solu-
tions they had chosen. Of the three extensions we con-
sidered, TCP Long Option presents the greatest cause
for concern. In particular, it becomes quite easy with

13



long options to produce behaviour that looks to a mid-
dlebox like inconsistent retransmission due to the con-
tents of extended options changing. Such inconsistent
retransmission is demonstrably unsafe. If TCP Long
Option were to be deployed, it would require additional
constraints to avoid this problem.

We plan to continue this work, examining more net-
works and adding more tests. In addition, long-term
continuous measurements are necessary to study the
evolution of middleboxes, whereas this paper only presents
a snapshot of the current Internet.

7. ACKNOWLEDGMENTS
We especially want to thank the volunteers from all

over the world who ran our test code; without their help,
we would have been unable to gather these results.

8. REFERENCES
[1] M. Allman. On the Performance of Middleboxes.

ACM IMC, 35(2):307–312, 2003.
[2] A. Bakre and B. Badrinath. I-TCP: indirect TCP

for mobile hosts. In Proc. IEEE ICDCS, 1995.
[3] H. Balakrishnan, S. Seshan, E. Amir, and

R. Katz. Improving TCP/IP Performance over
Wireless Networks. In Proc. ACM MOBICOM,
pages 2–11, 1995.

[4] A. Bittau, D. Boneh, M. Hamburg, M. Handley,
D. Mazieres, and Q. Slack. Cryptographic
protection of TCP Streams (tcpcrypt).
draft-bittau-tcp-crypt-00.txt, July 2010.

[5] A. Bittau, M. Hamburg, M. Handley,
D. Mazieres, and D. Boneh. The case for
ubiquitous transport-level encryption. In Proc.
USENIX Security Symposium, Aug 2010.

[6] B. Carpenter and S. Brim. Middleboxes:
Taxonomy and Issues. RFC 3234, Feb. 2002.

[7] R. Chakravorty, S. Katti, J. Crowcroft, and
I. Pratt. Flow Aggregation for Enhanced TCP
over Wide-Area Wireless. In Proc. IEEE
INFOCOM, pages 1754–1764, 2003.

[8] W. Eddy and A. Langley. Extending the Space
Available for TCP Options. Internet Draft, Jul.
2008.

[9] R. Fonseca, G. Porter, R. Katz, S. Shenker, and
I. Stoica. IP options are not an option. Tech. Rep.
UCB/EECS- 2005-24, 2005.

[10] A. Ford, C. Raiciu, and M. Handley. TCP
Extensions for Multipath Operation with Multiple
Addresses. Internet Draft, July. 2010.

[11] A. Ford, C. Raiciu, M. Handley, S. Barre, and
J. Iyengar. Architectural guidelines for multipath
TCP development. RFC 6182, Mar. 2011.

[12] F. Gont and A. Yourtchenko. On the
Implementation of the TCP Urgent Mechanism.
RFC 6093, Jan. 2011.

[13] M. Handley, V. Paxson, and C. Kreibich. Network
intrusion detection: evasion, traffic normalization,
and end-to-end protocol semantics. In Proc.
USENIX Security Symposium, pages 9–9, 2001.

[14] S. Hätönen, A. Nyrhinen, L. Eggert, S. Strowes,
P. Sarolahti, and M. Kojo. An Experimental
Study of Home Gateway. ACM IMC, 2010.

[15] V. Jacobson, R. Braden, and D. Borman. TCP
Extensions for High Performance. RFC 1323,
May. 1992.

[16] J.Border, M. Kojo, J. Griner, G. Montenegro, and
Z. Shelby. Performance Enhancing Proxies
Intended to Mitigate Link-Related Degradations.
RFC 3135, Jun. 2001.

[17] Re: [tcpm] Extending the TCP option space - yet
another approach. http://www.ietf.org/mail-
archive/web/tcpm/current/msg06481.html.

[18] L. Popa and A. Ghodsi and I. Stoica. HTTP as
the Narrow Waist of the Future Internet. In Proc.
ACM Hotnets ’10, 2010.

[19] M. Mathis, J. Mahdavi, S. Floyd, and
A. Romanow. TCP Selective Acknowledgment
Options. RFC 2018, Oct. 1996.

[20] A. Medina, M. Allman, and S. Floyd. Measuring
the Evolution of Transport Protocols in the
Internet. ACM CCR, 35(2):37–52, 2005.

[21] P. Srisuresh and M. Holdrege. IP Network
Address Translator (NAT) Terminology and
Considerations. RFC 2663, Aug. 1999.

[22] J. Padhye and S. Floyd. On Inferring TCP
Behavior. In ACM SIGCOMM, pages 287–298,
Oct. 2001.

[23] V. Paxon. End-to-End Internet Packet Dynamics.
In Proc. ACM SIGCOMM, pages 139–152, 1997.

[24] C. Raiciu, D. Niculescu, M. Handley, and
M. Braun. Opportunistic Mobility with Multipath
TCP. In Proc. ACM MobiArch, 2011.

[25] S. Savage. Sting: a TCP-based Network
Measurement Tool. In USENIX USITS, 1999.

[26] S. Savage, N. Cardwell, D. Wetherall, and
T. Anderson. TCP Congestion Control with a
Misbehaving Receiver. ACM CCR, 29(5):71–78,
1999.

[27] R. Stewart, M. Ramalho, and et al. Stream
Control Transmission Protocol (SCTP) Partial
Reliability Extension. RFC 3758, May. 2004.

[28] D. Watson, M. Smart, G. R. Malan, and
F. Jahanian. Protocol Scrubbing: Network
Security Through Transparent Flow Modification.
IEEE/ACM ToN, 12(2):261–273, 2004.

[29] D. Wischik, C. Raiciu, A. Greenhalgh, and
M. Handley. Design, implementation and
evaluation of congestion control for multipath
TCP. In Proc. USENIX NSDI, 2011.

14


